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TRANSFORMATION OF THE FREE PROPAGATOR TO THE QUADRATIC PROPAGATOR
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A space and time transformation is found, which changes the classical action for a quadratic lagrangian into that for a free
particle. It is shown that the propagator for a time-dependent damped oscillator can be obtained from the free propagator.

As is well known, the propagator of a quantum system is in principle obtainable from its classical lagrangian by
path integration [1]. In particular, if the lagrangian is quadratic, the propagator can be evaluated directly from
the classical action S via the van Vleck—Pauli formula [1,2],

W T i azsc ”2 . non,
K(x", ¢ ;x,r)=(-2-;ﬁw) exp[(iff)S x",t";x", 1)) . ()

Although this procedure for a quadratic system is exact and unambiguous, the actual calculation of the classical
action is not always simple. Therefore, calculations of the propagators for various quadratic systems have been
tirelessly appearing in the literature [3—8].

Recently, the technique of changing “space™ and “time” variables in path integration has been proven useful
for non-quadratic systems such as the hydrogen atom [9,10], the Morse oscillator {11}, and the Dirac—Coulomb
problem [12], to which formula (1) is not immediately applicable. It is certainly interesting to explore a similar
transformation technique for quadratic systems. For non-quadratic systems used are local transformations of
ghort time intervals which are usually non-integrable. In contrast, a transformation that relates the classical equa-
tion of motion for one quadratic system to that for another quadratic system, if available, is globally meaningful
in quantization, since the propagator given by (1) depends only on the classical solutions. In this paper, we pro-
pose to utilize such a global transformation of “space” and “time” variables, say, y = y(x, f) and s = s(f), for
finding the propagator of the second quadratic system K»(x", t";x', ") from that of the first K ,(x", 1"; x, ') as

Ky(x", t"x', £ = [(8y'fax")(@y"/ax")] V2 K, 7, 5"y, 8'). 2)

First, we present a space and time transformation which changes a quadratic action into a free particle action.
Then we show that the propagator for a quadratic lagrangian can be obtained from the propagator for a free
particle by the transformation.

The most general quadratic lagrangian is [1]

LG, 4, ) =a(1)q? + b(D)4q + c(t)q? + d(D)§ +e(D)q + (1), 3)

where g, b, ¢, d, e and f are all well-behaved functions of time and @ # 0. As a physical lagrangian, (3) is a little
more general than necessary. The equation of motion for a system described by (3) is given by

F + Mg + win)a =g, 4)
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where ?'\(t) = jfa, WHt) = (5 —2c)}2a and g()=(e — 3)/ 2a. It is easy to see that (4) can also be obtained from
the lagrangian of the form '
L=3meMD[§2 — w¥()q? + 2%(Dq) +F(g, D), ()

where F(g, t) is an arbitrary function of ¢ and ¢. Thus we may take (5) rather than (3) as a general quadratic
lagrangian. Furthermore, if a special solutior k() of (4) can be found for a given external force g(f), then the
simple translation of the variable,

x=q-h(@), (6)
reduces (4) into '
¥+ MOx+w¥Hx=0. )
The corresponding lagrangian is

L=im dOE2 — 2 0)x2] +G(x, 0), (8)

where G(x, ) is another arbitrary function. In this paper, we limit ourselves to the quadratic systems whose
lagrangians are reducible to those of the form (8). In doing so, we are apparently dealing with a linear oscillator
with a time-dependent damping parameter A(¢) and a time-dependent frequency w(?).

A general solution of the time-dependent damped oscillator equation (7) may be given by

x(8) = Ap(t) ¢S + Bp(r) e~ior) | %)
where the two functions p(#) and r(¢) satisfy the relations

P+is+(w?-a??)p=0 (10)
and

Fi#+A+2p/p=0, an

or 3fp2er = C. Here A, B, C and & are real constants. Now we wish to show that the action for the time-depen-
dent damped oscillator (7) can be converted into that for a free particle by the following transformation of
“space” and “time” variables;

y =x ;MO2HHV2 sec[Gr(D), s =tan[Tr(D]/E. (12)
Substitution of (12) into (8) yields |

L=4(mi)3? -G, 0+ 60,0, (13)
where

G =3my™(& cos &or sin &t — plps). , (14)

Thus we see that the classical action for the quadratic lagrangian (8),

1
S, = J‘ Lz, %, 1) dt (15)

reduces to the action for a free particle,

S.= [ imp2ds+ (GO0 -T(.0)Y (16)
M
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where &s' = tan[@7(r')]. &s” = tan[@or(¢")] and § = dy/ds = p/$. The last term in (16) is physically unimportant
since it does not contribute to the equation of motion. Indeed, it can always be removed by setting G = G without
altering physics. Strange though it may sound, a time-dependent damped oscillator in one set of space and time
variables is a free particle in another choice of variables. This interesting property, which seems to have never been
noticed before, may be employed to derive the propagator for the time-dependent damped oscillator from the
free propagator.

The free propagator for (16) is given if G = G by

Ko®".s":y',s') = [mf2miR(s" — 5')]12 explim(y” — y")2[20(s" — ")} . (17)
If G # G, then {17) must be multiplied by a phase factor,
0" 5"y, 8y = exp (M) GO, 5) - G, 9] ). (18)

By the space and time transformation (12), therefore, the propagator for the time-dependent damped oscillator
(8) can readily be obtained from (2) as

KG" 1" x', £y = [(3'[ox")@y" [ox" Y 12 Ko, 5" 7', s WO, 5" 9 8D (19)
To be more explicit, we substitute (12) into (19) and use the identities,

A sec?a + B sec ﬁ_

tano —tan =(A +B)cot(a—f+Atana —Btanf, (20)

secasecf _ ]
tana—tan f§ sin(a - §)° @1

the result being

” " I § mw ¥+ eh"*a'" 1f2 1{2 L " U ’
Kix",t":x',t)= (th(m[w(f"z"')i) & X, )

X exp{{im@/2n sin[(r" — )] }{(x"2er" " + x'2eX ') cos[@(7" — 7')] — 2x'x"(F'F"eN TN )/2}) 22)
where
f", 175 x', 1) = exp{(im/2m) [x2eMp/p + (2/m) G(x, D)L} . (23)

The propagator (22) contains the results previously obtained for various quadratic systems after lengthy calcula-
tions [3—8].

Next we examine some of the special cases contained in (22) For the time-dependent oscillator with a constant
damping parameter A, i.e., for X' + Ag% + w(#)x = 0, we simply replace \(£) in (12) and (22) by Ayt. In the limit
Ay = 0, we get from (22) the propagator for the oscillator with a time-dependent frequency w(?) 3],

ma(T7 )1/2 ' ) 1/2 X" I"'X' f')
2aih sin[&(r" 1),

K", "x', )= (

X exp{{im&/2# sin[&(r" - 7)) }{(x"2+" + x'27 Yeos[@(r" — 7')] — %" (#'F")12} . (24)
The relations (10) and (11) satisfied by {7} and p(f) become Pinney’s equation,
F+wX(p-C2p3=0, : (25)

with &%p2 = C. In the case of the damped harmonlc oscﬂlator ¥ + \o¥ + whx = 0, with a constant frequency wy,
(10) and (11) give us p = exp(—3 Apt), @ w,‘ “’0 .7\0 and 7=t when A(f) = Myz. Accordingly, the transfor-
mation (12) reads
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y=x exp({: Agt) sec(en?), 5= tan( w,t)/w, . (26)

The propagator found from (19) with (26} coincides with that in the literature [3—7]. Moreover, in the limit A,
- 0, we have p = constant, & = wq,7=¢ and A = 0. The transformation (26) takes the form

y=xsec(wgt), 5= tan(wyt)wy, 27

which is identical to what has earlier been referred to as the Jackiw transformation [13,14]. When (27) is applied,
(19) leads to the well-known propagator for the harmonic oscillator [1}]. If A; # 0 and wg = 0, then (26) turns
out to be .

2 1—e hof
=2xf(1+e M), s== —7r
y=2x(( ) P

which is similar to but different by a multiple factor 2(1 + e~*of)~1 from the Levi-Civita transformation [15].
With (28), the expression (19} yields for G =0

(28)

K", "%, 1) = (Agm[2mif) 12 (e—Rof — e—2or")~1i2 exp [(\gmf2R)(e N7 — e-Mof)~1(x" — x")2], (29)

which is the propagator for a particle moving in a frictional medjum [8]. For a falling particle in a frictional
medium under the gravitational acceleration gg, obeying §’ + Agd + £ = 0, we apply the translation (6) with h(%)

= got directly to (19) to find
K", "5, £') = (\gm/2mif) V2 (e ~2of — e~Rat")-1/2

X exp{(idgm/2M)(e=2? —e~2!")~1[(@" — q')? — 2goAg)(t" ~ )" ~a') + (8o/A)2(t" - )]}, (30)

Finally, we wish to remark that since etd#/x? = ds/y? under (12), our transformation technique works in the
presence of a singular potential ¥(x) =$ke*/x? in (8). This extension will be discussed elsewhere.
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